Помогите с решением задачи по алгебре!

математика алгебра

Задача из ГИА: найдите наибольшее значение выражения (x^3-y)/(x^2+1)-((x^2)y-x)/(x^2+1), если x и y связаны соотношением y=x^2+x-4.

Примечание:
А дальше?
Ответы:
вместо y вставляем x^2+x-4
(x^3-x^2-x+4)/(x^2+1)-(x^2*(x^2+x-4)-x)/(x^2+1)=((x^3-x^2-x+4)-(x^4+x^3-4x^2-x))/(x^2+1)=
=(x^3-x^2-x+4-x^4-x^3+4x^2+x)/(x^2+1)=(3x^2-x^4+4)/(x^2+1)


11 лет назад

RPI.su - самая большая русскоязычная база вопросов и ответов. Наш проект был реализован как продолжение популярного сервиса otvety.google.ru, который был закрыт и удален 30 апреля 2015 года. Мы решили воскресить полезный сервис Ответы Гугл, чтобы любой человек смог публично узнать ответ на свой вопрос у интернет сообщества.

Все вопросы, добавленные на сайт ответов Google, мы скопировали и сохранили здесь. Имена старых пользователей также отображены в том виде, в котором они существовали ранее. Только нужно заново пройти регистрацию, чтобы иметь возможность задавать вопросы, или отвечать другим.

Чтобы связаться с нами по любому вопросу О САЙТЕ (реклама, сотрудничество, отзыв о сервисе), пишите на почту [email protected]. Только все общие вопросы размещайте на сайте, на них ответ по почте не предоставляется.