Берут две колоды карт по 52 карты и из первой во вторую перекладывают случайным образом 2 карты. Затем из второй колоды берётся одна карта.
Какова вероятность, что она окажется дамой?
Примечание:
Спасибо. Есть всё-таки умные люди здесь...
У всех ответивших решения правильные! Больше всего мне понравилась идея smoliar'а, но, к сожалению, не всем сразу в голову приходит такая идея. Признаюсь, когда сам увидел эту задачку на ответах@mail.ru, мне первой в голову пришла формула полной вероятности (решение Yuric'а), далее способ с математическим ожиданием (расскажу Вам о нём), а уже о основной идеи (решение smoliar'а) узнал от одного умного человека...
Итак, способ решения с математическим ожиданием. Этот способ исходит из классического определения вероятности.
Вероятность переложить одну даму из первой колоды: p₁ = 32 / 221
Вероятность переложить две дамы из первой колоды: p₂ = 1 / 221
Математическое ожидание числа дам во второй колоде после этого:
m = 4 + 1·(32 / 221) + 2·(1 / 221)= 54 / 13
Всего карт во второй колоде стало:
n = 52 + 2 = 54
Тогда вероятность извлечения дамы из второй колоды:
P = m / n = (54/13) / 54 = 1/13
Ответ: 1/13
Впрочем, исходя из этого способа решения, можно доказать, что вероятность вытащить даму из второй колоды постоянна и равна 1/13 независимо от числа перекладываемых карт.
Легко догадаться, что математическое ожидание числа дам во второй колоде при любом N, будет равно:
(52 + N) / 13
А всего карт во второй колоде 52 + N
Делим математическое ожидание (52 + N) / 13 на 52 + N и получаем 1/13.
Значит, вероятность будет равна 1/13 независимо от числа перекладываемых карт.
Лучший ответ отдаю Yuric'у, да простит меня smoliar.
RPI.su - самая большая русскоязычная база вопросов и ответов. Наш проект был реализован как продолжение популярного сервиса otvety.google.ru, который был закрыт и удален 30 апреля 2015 года. Мы решили воскресить полезный сервис Ответы Гугл, чтобы любой человек смог публично узнать ответ на свой вопрос у интернет сообщества.
Все вопросы, добавленные на сайт ответов Google, мы скопировали и сохранили здесь. Имена старых пользователей также отображены в том виде, в котором они существовали ранее. Только нужно заново пройти регистрацию, чтобы иметь возможность задавать вопросы, или отвечать другим.
Чтобы связаться с нами по любому вопросу О САЙТЕ (реклама, сотрудничество, отзыв о сервисе), пишите на почту [email protected]. Только все общие вопросы размещайте на сайте, на них ответ по почте не предоставляется.