2sin²x - 3sinx +1=0

математика алгебра тригонометрия

Дайте развёрнутый ответ.
Ответы:
2sin²x - 3sinx +1=0
t=sinx, -1≤t≤1
2t²-3t+1=0  =>  t=(3±√(9-8))/6=(3±1)/4
t₁=1, t₂=½
1) sinx=1  =>  x=π/2+2πn
2) sinx=½  =>  x=(-1)^n•π/6+πn
Пускай sin x = t.
Тогда 2t²-3t+1=0
D=9-8=1
t1=0.5 t2=1
x=π/6+2πn  x=5π/6+2πn  x=π/2+2πn, где n∈Z


13 лет назад

RPI.su - самая большая русскоязычная база вопросов и ответов. Наш проект был реализован как продолжение популярного сервиса otvety.google.ru, который был закрыт и удален 30 апреля 2015 года. Мы решили воскресить полезный сервис Ответы Гугл, чтобы любой человек смог публично узнать ответ на свой вопрос у интернет сообщества.

Все вопросы, добавленные на сайт ответов Google, мы скопировали и сохранили здесь. Имена старых пользователей также отображены в том виде, в котором они существовали ранее. Только нужно заново пройти регистрацию, чтобы иметь возможность задавать вопросы, или отвечать другим.

Чтобы связаться с нами по любому вопросу О САЙТЕ (реклама, сотрудничество, отзыв о сервисе), пишите на почту [email protected]. Только все общие вопросы размещайте на сайте, на них ответ по почте не предоставляется.